Structures for improving smallholder chicken production in Bangladesh breeding strategy

H.A. Jensen

D-2500 Valby, Denmark

The framework for rural poultry development in Bangladesh has been developed through an historically long learning-by-doing process. The two main actors in this process are: 1) a national NGO, the Bangladesh Rural Advancement Committee (BRAC); and 2) the Government through the Department of Livestock Services (DLS).

Introduction

In the late 1970s BRAC identified poultry rearing as a source of income for landless, particularly destitute women. In the early 1980s BRAC and DLS initiated a participatory action research programme aimed at increasing the productivity of small flocks of hens in village conditions and to develop a replicable smallholder model.

In 1987 the experiences of poultry development and the Government food for aid for destitute women were integrated into an independent programme 'Income Generation for a Vulnerable Group Development Programme'. The results were very promising and other development programmes built on the same concept followed, but were further refined based on previous experiences.

Currently ten national NGOs are involved in the smallholder concept and Governmental institutions; extension, education and research are in the process of being integrated in the smallholder concept. However, BRAC is by far the leading NGO in the development of a smallholder poultry sector. The possibilities for women's participation in poultry development are according to Dr Saleque and Shams Mustafa (1996) (BRAC), as follows:

- 1. About 70 percent of rural landless women are directly or indirectly involved in poultry rearing activities. Traditionally these women have some experience in poultry rearing, which therefore represents skills known to them.
- 2. BRAC has proved that homestead poultry rearing is economically viable. If the landless women are properly trained, supported with

Table 1. Summary of poultry activities and project.	Table 1.	Summary	of po	ultrv	activities	and	projects
---	----------	---------	-------	-------	------------	-----	----------

Project	SLDP I	PLDP	PNP	SLDP II	IGVGDP	RDP/BRAC
Project	1992-98	1998-02	1997-01	1999-03	1987-	1986-
Period	IFAD/	ADB/	World	Danida	WFP	Continue as
and	Danida	Danida	Bank			a BRAC
Donors						activity
Thanas	80	89	40	26	Country-	Country-
covered					wide	wide
Benefi-	Landless	Landless	Poorest	Primary	Very	Rural poor
ciaries:	poor	and poor	HHs	poor	poor	1.2 million
number	women	women	with a	women	women	HHs
and type	400 000	363 000	child	109 000	400 000	
	HHs	HHs	below 2	HHs	HHs	
			years or			
			pregnant			
			women			
			69 000			
			HHs			

Kazi Abdul Fattah (1999). Director General of DLS

HHs: House Holds

Thana: Administrative unit. Bangladesh is divided into some 460 Thanas.

credit and other necessary inputs and made to operate under the supervision of extension workers of both Government and BRAC, the Government machinery is activated to provide for the delivery of services, the poultry sector could be one of the most productive sectors.

- 3. Poultry rearing is suitable for widespread implementation as it is of low cost, requires little skill, is highly productive and can be incorporated into household work.
- 4. There are few or no job opportunities for the landless, disadvantaged women. Poultry is the only activity in which a large number of landless women can participate.
- 5. In the small-scale poultry units which support the landless, production per bird may be low, but distribution of benefits will be more equal and have great human development impact.
- 6. Poultry rearing is culturally acceptable, technically and economically viable. Moreover, the ownership of poultry is entirely in the hands of women. This is an asset over which the poor women actually have control. This activity can therefore play an important role in poverty alleviation which is the main goal of BRAC.

BRAC has taken the advantages of using poultry as an instrument in its poverty alleviation programme. BRAC had, in 1997, 2.2 million members of which more than 1.2 million were involved in poultry activities. Table 2 shows the development of BRAC's poultry activities.

Table 2. Component wise poultry programme participants – cumulative numbers 1990-97.

Component	1990	1991	1992	1993	1994	1995	1996	1997
1. Poultry	3 841	5 000	7 504	22 788	25 033	31 135	33 572	41 228
worker ¹								
2. Chick rearer	650	1 106	1 952	5 836	8 244	8 453	10 986	14 723
3. Smallholder ²	56	105	191	455	638	802	840	1 190
	664	051	457	441	104	906	488	490
4. Pullet rearer							1 308	2 260
5. Model rearer(PS)							7 761	11 195
6. Egg collectors				2 255	2 284	2 384	2 629	2 798
7. Hatchery owners				327	454	955	1 115	1 349
8. Feed seller	24	52	104	807	1 515	2 800	2 347	2 450
9. Cage rearers							50	5 000
10. Broiler							25	1 000
rearers	01 170	111	001	407	075	0.47	000	1 070
Total	61 179	111	201	487	675	847	900	1 272
		209	017	454	634	633	281	493

Saleque (1999)

BRAC has established a commercial wing for supplying inputs to its members.

The smallholder described below is intended to provide the background for understanding the formulated breeding strategy. For a more functional description of the model, reference is made to Jensen (1996) and Saleque (1996 and 1999).

The smallholder model

The smallholder sector is built up by the implementation of a number of development projects. The development objectives of the Government are improving living standards and welfare of the poorer strata of the rural population. The development objectives of the projects are a sustainable increase in the smallholder poultry sector and therefore, gives support to women especially those from the poorest and landless households. The immediate objectives are improved husbandry practice and increased institutional capacity of Government institutions and the participating NGOs leading to increased productivity.

Objectives and target groups

¹Para vet.

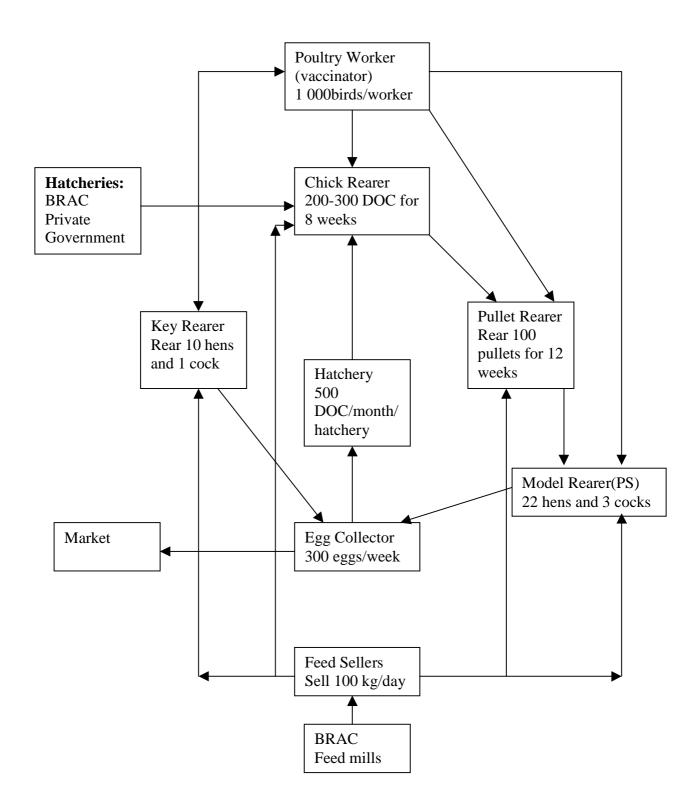
²Key Rearer with 10 hens

The target groups are women belonging to the poorest segment of the rural population. The potential beneficiaries are all selected on poverty criteria.

Development Strategy

The common features of a smallholder development project are: 1) a component directly targeting the beneficiaries, the NGO component; and 2) a component targeting institutional development, the DLS component.

The smallholder model is based on creating an enabling environment, *inter alia*, an environment in which all inputs and services needed are available in the village to minimise the risks for investment in a smallholder activity. Furthermore, no subsidies are involved at the user level, all the activities operate in free market conditions.


Poultry activity is compulsory for the first loan, but after repayment of the first loan the beneficiary is entitled to a new loan and is this time free to select an activity of her own choice.

The NGO component comprises: 1) establishing of area offices, one for each 3 000 to 6 000 members; 2) selecting potential beneficiaries; 3) organizing village groups; 4) commencing a savings programme; 5) training of beneficiaries; 6) creating and enabling an environment by establishing income generation activities such as input suppliers, veterinary service activities and marketing; 7) providing loans and assisting each of the beneficiaries in establishing an income generation activity; and 8) technically supporting the operation of different activities.

The establishing cost and first three years operational costs of an area office are usually covered by the project (Donor). After that, the profit margin from loans, sales of inputs and service fees from the 3 000 to 6 000 members is enough to cover the NGO's cost of maintaining and operating the office.

The DLS's role, as the implementing agency, is to coordinate, monitor, control and to provide technical support. An important activity in this respect is to accumulate experiences from previous and on-going projects and ensure that these experiences are reflected in formulation of new projects.

In on-going and planned projects there are DLS components such as: 1) activities and facilities for implementation of a breeding programme; 2) activities and facilities for establishing a Management Information System; 3) activities and facilities for establishing an international training institution; and 4) budgets for applied research activities and a comprehensive human resource development programme.

BRAC Poultry Programme. Modified after Saleque 1999.

BRAC broilers and layers in cages are not included in the above flowchart. The activities shown in the flowchart have to be compared with the numbers in Table 2. For instance there are more than 14 000 chick rearers, each rearing some 250 chickens four times a year, making an annual production of 14 million eight week old pullets.

Breeding strategies

Context

The end user, the smallholder, keeps a small flock of chickens, which is normally composed of four to six high yielding variety (HYV) hens, one HYV cock and three to four Desi hens. The Desi hens are used in the traditional way: incubating, rearing and laying (reference is made to Jensen, 1996). The HYV hens are used for production of table eggs and to some extent to production of hatching eggs. The hens are scavenging for the main part of their feed, but in particular, the HYV hens are also provided with supplemental feed.

The distribution flow is rather complicated, because it is divided into a number of small entrepreneurs: Suppliers of PS > Chicken Rearers > Pullet Rearers > Model Rearers > Mini Hatcheries > Chicken Rearers > Key Rearers.

The HYV chickens are sold by the Chicken Rearers to the smallholders at an age of eight weeks or produced by the smallholders (Key Rearers) themselves.

The DOCs (Day Old Chickens) are provided to the Chicken Rearers by either: 1) mini- hatcheries; 2) Government Poultry Farms; 3) NGO hatcheries; 4) private hatcheries; or 5) by the Smallholder herself by using the Desi as mother hens.

Table 3. Sources of Parent Stock (PS).

Sources of PS	Breeds	Replacement of PS	Customers
		<u> </u>	
Government	White Leghorn,	Reproduction of	Model rearers
Poultry Farms, GPF	RIR, Fayoumi	purelines	
NGO-Hatcheries	Hybrids	Imported	Chicken rearers
	(Commercial PS)	•	
Private Hatcheries	Hybrids	Imported	Chicken rearers
	(Commercial PS)	1	through NGOs
Model Rearers	RIR males and	Purchased from	Chicken rearers
	Fayoumi females	GPF	through mini
	J.		hatcheries
Key Rearers	Exotics and crosses	Purchased from	Other villagers
3	with Desi	chicken rearers or	S
	WILLI 2001	reproduction of	
		•	
		own stocks	

The development of the different sources of parent stocks has been driven by the demand of day old chickens. A breeding strategy was formulated in the mid 1990s based on a Central Government breeding farm planned to produce parent stock to Sonali chickens, a cross between RIR males and Fayoumi females and parent stock to produce a cross between Fayoumi males and commercial hybrids as the female line. The implementation of the breeding strategy has fallen behind the development and the NGOs had found other ways to satisfy the demand of day old chickens and this may not be the optimal solution for the end user.

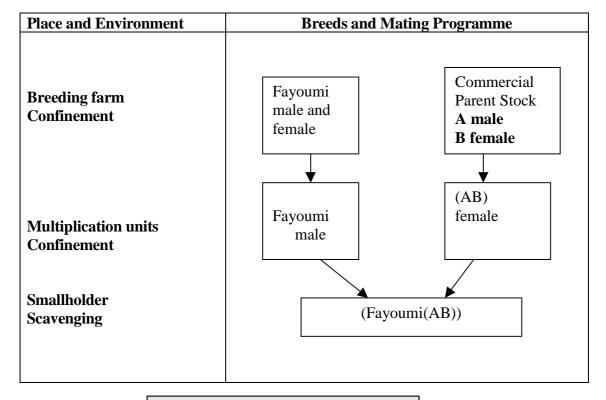
Development of breeding strategies

A suitable breeding strategy for the smallholder concept is rather complicated. In the reproduction and multiplication links the hens are kept in confinement and fed with balanced feed. Consequently, egg production traits are the most important for a viable operation. However, the end user, the smallholder with ten hens, keeps the hens in semi-scavenging conditions and consequently such traits as scavenging traits and survival traits are the most important. A way to solve that, is the use of specialised breeds or lines, as shown by Moav (1966) in which the reproduction traits are conveyed through the female line while the traits important for the end product are conveyed through the male lines.

An experiment commenced in 1993 where different exotic hens were tested in semi-scavenging conditions. One of the breed combinations was a cross between commercial hybrid as the female line and an improved breed (Fayoumi, RIR or WL) as the male line. The hypothesis was, that use of commercial hybrids as parent hens would satisfy the multiplication links with respect to high egg yield while use of another breed such as males would satisfy the end user with respect to good scavenger and survival traits. Another breed combination was a cross between RIR-male and Fayoumi-female (SONALI), a combination known to have high performance values in the semi-scavenging system (Amber, 1986). A summary of the results is shown in Table 4.

The outcome of the experiment (Rahman et al., 1996) shows that the SONALI hens had the highest egg production and the lowest mortality rate. Although these performances were not significantly different from some of the combinations with hybrids as those of the female combination, it was decided to base the breeding strategy on production of SONALI hens. One of the reasons was that SONALI in several experiments had proven to be a superior combination.

A breeding strategy for the semi-scavenging concept was outlined by Jensen (1996a). 'In general, breeding strategies in developing countries have focused far too much on the genetic potential of the breeds. It is stressed, however, that improved breed can never be a substitute for bad management.


Table 4. Performance of experimental hens reared in semi scavenging condition according to breed combinations.

	Breed combinations (Least square mean values)							
Parameters	AB (Lohmann brown)	(Ax RIR) x Fayoumi	Fayoumi x AB	RIR x AB	RIR x Fayoumi	RIR x WLH	(RIR x Fayoumi) x AB	WLH x AB
1. Age of first egg (week) 2 Eggs/hen/year * (hen day) Actual no. of eggs	34.5 140 ^{ab}	32 137 ^b	32 125 ^b	34 139 ^{ab}	33 156 ^a	32 128 ^b	32.5 141 ^{ab}	34 139 ^{ab}
per hen (hen day)	86 ^b	104 ^{ab}	86 ^b	105 ^{ab}	119 ^a	97 ^b	86 ^b	99 ^{ab}
3. Mortality % (excluding predator loss)	22.14 ^{ab}	35.04 ^b	27.59 ^{ab}	32.64 ^b	15.98 ^a	25.21 ^{ab}	21.20 ^{ab}	22.88 ^{ab}
4. Mortality % due to predator	1.38	0.87	1.40	2.71	2.09	0	5.31	2.61
5. Supplementary energy Kcal/bird/day	146 ^b	122ª	136 ^{ab}	144 ^b	130 ^a	134 ^{ab}	146 ^b	135 ^{ab}
6. Supplementary protein (g)/bird/day	7.3 ^b	6.0^{a}	6.9 ^b	7.2 ^b	6.4 ^a	6.6 ^{ab}	7.1 ^b	6.6 ^{ab}
7. Supplementary feed cost (Taka)/bird/laying year	202.51 ^b	177.44 ^a	193.72 ^{ab}	203.18 ^b	184.20 ^a	190.62 ^a	205.32 ^b	192.10 ^{ab}
8. Gross margin (Taka)/hen up to one laying year (Income— Cost)	134.66 ^b	169.83 ^{ab}	113.08 ^c	133.13 ^b	205.17 ^a	145.53 ^b	132.09 ^b	154.65 ^b
9. Egg production period (Months)	8.54	9.84	9.17	9.37	9.84	9.13	8.74	8.97

Rahman et al (1996)

Figures with same or no superscript in a row are not significantly different (P<0.05)

Potential Breeding Strategy Commercial Hybrids as Parent Hens

^{*} Corrected for 12 months egg production period

Table 5. Rate of lay, percent for pure-breed and crosses and the hybrid vigour.

Feeding system	RIR	Fayoumi	SONALI	Hybrid vigour
Free access, in confinement	46	49	50	+5%
Scavenging + 75 g supp.feed	19	20	33	+69%
Scavenging + 25 g supp.feed	12	10	18	+64%

Rahman (1996).

The objectives of a breeding strategy for the semi-scavenging poultry holdings are to:

- 1. Maintain breeding stocks with a genetic potential which matches the best smallholder management skills for producing eggs on the basis of a behaviour conducive to semi-scavenging conditions. Consequently, the management skills and not the genetic potential will be the limiting factor in improving the productivity.
- 2. Maintain the breeding stock under circumstances which give the best health security and produce parent stocks with a uniform antibody status in order to obtain the best immunity from the vaccination programme.
- 3. Have a multiplication and distribution system which optimises the financial results for the end users, in this case the smallholders take the productivity in the multiplication units into due consideration.

The semi-scavenging model is in fact an integrated production chain and all links involved shall be considered in the formulation of a breeding strategy. Breeders and chicken rearers, where the birds are kept in confinement and fed with balanced feed, must *inter alia* also be viable units. In reproduction links, the egg yield and feed efficiency are the most important traits, while at smallholder level, traits such as survival rate and scavenging behaviour are more important.

Indigenous breeds are developed and adapted to the local environment and do not produce eggs in confinement with free access to balanced feed. Consequently, they have lower productivity than the improved breed when kept in confinement when they are kept in multiplication units. However, a programme where indigenous breeds are used as parent males will not effect the viability of the multiplication units.

In Table 6 the production cost for producing day old chickens calculated for the breed combinations is shown: commercial parent stock, commercial parent hens used as grand parent stock (Hybrids), and Fayoumi.

Table 6. Cost calculation of Day Old Chicken (DOC) with different parent hens.

Assumptions	Fayoumi	Hybrid	Comm. PS
Price, day old PS, taka	30	40	200
Rearing, feed, kg	9	9	9
Laying feed, kg	46	46	46
Other cost, % of feed cost	0.4	0,4	0,4
Feed price, taka/kg	12	12	12
Survival rate, rearing, %	0.9	0,9	0,9
Survival rate, laying, %	0.9	0,9	0,9
Egg yield, number per hh	200	260	240
Ratio of hatching eggs	0.75	0,9	0,9
Utilisation of hatching eggs	0.95	0,95	0,75
Hatchability of egg set	0.75	0,75	0,75
Price for DOC, unsexed, taka	12	12	15
Price for table eggs, taka/egg	3	3	3
Cost calculation, per hen			
Day old PS	33.33	44.44	222.22
Feed	660.00	660.00	660.00
Other cost	264.00	264.00	264.00
Total cost	957.33	968.44	1 146.22
Production			
Number of eggs	200.00	260.00	240.00
Number of hatching eggs	150.00	234.00	216.00
Unutilised hatching eggs	7.50	11.70	54.00
Number of table eggs	57.50	37.70	78.00
Number of DOC	106.88	166.73	121.50
Income, taka			
Sales of DOC	1 282.50	2 000.70	1 822.50
Sales of table eggs	172.50	113.10	234.00
Total sales	1 455.00		2 056.50
Profit, taka per hen	497.67	1 145.36	910.28
Production cost per DOC	8.96	5.81	9.43

Note: The actual production costs may differ from this calculation, but the differences will be very close to the figures shown above.

By using hybrids as parent hens instead of commercial parent stocks, the overall cost will be reduced with three to four taka per DOC. Fayoumi and commercial parent stock have almost the same production cost. Jensen(1996). Not published

The preliminary conclusions to be drawn are:

- 1. The semi-scavenging model developed in Bangladesh can provide an environment and management skills to utilise the genetic potential of breeds with a higher value than the capacity of randomly selected HYV breeds.
- 2. There is no rational behind use of commercial layers in semi-scavenging conditions at smallholder level. However, use of commercial hybrids as parent hens will enhance the viability of the rural parent farms and a combination of hybrid parent hens and a HYV male may be a viable solution for smallholders.
- 3. The SONALI (RIR x Fayoumi) breed has a remarkable high performance in semi-scavenging conditions compared with other breeds.

An appropriate breeding strategy may be the use of commercial brown hybrids as parent hens and a coloured improved breed as parent males. Even though the strategy may not be the optimal solution, it is manageable and can be applied until a better strategy has been developed. Furthermore, the proposed strategy provides optimum opportunities for parent farms to be viable operations, because the parent hens will have high genetic potential for producing hatching eggs with low feed costs when kept in confinement and provided with balanced feed. (This strategy is not applied in Bangladesh).

The main constraint in implementing the breeding strategy is the low level of biosecurity (conditions which minimise the health risk) on Government Poultry Farms intended to be used as multiplication units and with a central breeding farm as supplier of the parent stocks. The farms are not designed to use an all-in -all-out system and the hatchery is located close to the chicken houses. This problem has not been solved yet and in the meantime the NGOs develop their own ways of distribution chickens.

DLS is in the process of establishing a separate breeding farm operating as a grandparent farm for producing parents to SONALI chickens at six of the Government's hatchery farms.

Present breeding plans

There will be 2 500 Fayoumi hens and 500 RIR hens as grandparents. The grandparent population will be reproduced from the pure-breeds with some selection pressure on egg size and age at maturity.

Even though the breeding goals are defined, good scavenging and survival traits, a method to record such traits and use them in a selection index have to be developed.

Lessons learned

- 1. The research base for breeding activities related to semi-scavenging or scavenging conditions is very limited.
- 2. Government poultry farms are usually designed to carry out a number of activities and biosecurity in this respect has low priority.
- 3. A dissemination structure in which biosecurity has high priority is a must due to the direct link from breeding to all the end users. It is very difficult to integrate existing Government farms into such a system.
- 4. Politically it is difficult to implement a system in which due consideration is given both to the reproduction and multiplication links and to end users.
- 5. The reproduction links and the hatcheries are more powerful than the end users in setting the breeding goals.
- 6. Research institutions in the developing countries are not involved enough in developing breeding activities to be used in their own county.
- 7. To formulate and implement a breeding strategy is a long process and takes at least five years. Consequently, a dissemination system with high biosecurity has to be developed and implemented as the first step and simultaneously the breeding programme can be developed.

Reference

Fattah, Kazi Abdul (1999). Poultry as a Tool in Poverty Eradication and Promotion of Gender Equality. Proceedings of a Workshop: Editors, Frands Dolberg and Poul Henning Petersen. http://www.husdyr.kvl.dk/htm/php/tune.htm

Jensen, Hans Askov (1996). Semi-Scavenging Poultry Flock. Proceedings of a Workshop: Editors, Frands Dolberg and Poul Henning Petersen. http://www.husdyr.kvl.dk/htm/php/tune.htm

Jensen, Hans Askov (1996a). Semi-Scavenging Model for Rural Poultry Holding. Proceedings of XX World Poultry Congress, New Delhi, India. Volume 1.

Moav, R and W.G. Hill (1966). Specialised sire and dam lines. Selection within lines. Anim. Prod. 8, 375-90.

Rahman, Mahfuzar, Poul Sorensen, Hans Askov Jensen and Frands Dolberg (1996). Exotic Hens Under Semi Scavenging Conditions in Bangladesh. http://www.cipav.org.co/lrrd/lrrd9/3/bang931.htm

Rahman, Mahfuzar, N. Islam, N.R. Sarker and M.M. Islam (1996). Effect of Supplementary Feeding on Production Performance of RIR, Fayoumi and their Cross-bred Chicken in Rural Bangladesh. Bangladesh Journal of Livestock Research, Volume 5 – 1998.

Saleque, Md, A. and Mustafa Shams (1996). Landless Women and Poultry: The BRAC Model in Bangladesh. Proceedings of a Workshop: Editors, Frands Dolberg and Poul Henning Petersen. http://www.husdyr.kvl.dk/htm/php/tune.htm

Saleque, Md.A. (1999). Scaling-up: Critical Factors in Leadership, Management, Human Resource Development and Institution Building in going from pilot project to large-scale implementation. Proceedings of a Workshop: Editors, Frands Dolberg and Poul Henning Petersen. http://www.husdyr.kvl.dk/htm/php/tune.htm